Although the medicinal properties of *Ginkgo biloba* L. have been known in China since the most ancient times, a systematic pharmacological and clinical study of this plant only began in Europe in the last decades. Often defined as a “living fossil,” the *Ginkgo biloba* tree is the only survivor of a genus originated 150 millions years ago. It derives its name from a wrong transcription of the Japanese Yin-Kwo, meaning “silver fruit.”

In an extensive review by DeFeudis in 1991, the activity of *Ginkgo biloba* is described as “polyvalent,” as its pharmacological action is due to the combined activity of several actives. The major therapeutic indications for the standardized *Ginkgo biloba* leaves extract concern cerebral insufficiency and peripheral vascular disorders. The term “cerebral insufficiency” indicates a collection of symptoms concerning the cerebral functions, such as impairment of short term memory, confusion, change in social behavior, lack of initiative, affective and somatic troubles. These symptoms may be associated with impaired cerebral circulation and ageing.

Considered as early signs of senile dementia both of degenerative type and vascular origin, the symptoms are managed with *Ginkgo biloba* extract (GBE) which is considered helpful in the growing area of senile dementia.

The cognition enhancing properties of the plant are attributed to the flavonoids fraction which are responsible for:

- Enhancement of the release of catecholamines and other neurotransmitters
- Inhibition of biogenic amine intake
- Inhibition of catechol-O-methyl transferase and MAO
- The unique terpenoids ginkgolides and bilobalide exert vaso- and tissue-protective activity as:
 - Relaxation of blood vessels in spastic conditions
 - Contraction increasing the tone of abnormally relaxed vessels
 - Protection against increase in capillary permeability
 - Inhibition of platelet aggregation
 - Anti-ischemic and anti-oedema properties

A natural cognition enhancer

The cognition enhancing properties of the plant are attributed to the flavonoids fraction which are responsible for:

- Enhancement of the release of catecholamines and other neurotransmitters
- Inhibition of biogenic amine intake
- Inhibition of catechol-O-methyl transferase and MAO
- The unique terpenoids ginkgolides and bilobalide exert vaso- and tissue-protective activity as:
 - Relaxation of blood vessels in spastic conditions
 - Contraction increasing the tone of abnormally relaxed vessels
 - Protection against increase in capillary permeability
 - Inhibition of platelet aggregation
 - Anti-ischemic and anti-oedema properties

Please note that this documentation is available for various countries all over the world and hence it may contain statements not applicable to your country. The marketer of any finished product containing any ingredient is responsible for assuring that the destination of the product and the claims made for the finished product are lawful and comply with all applicable laws and regulations of the country or countries in which the product is to be sold.
Clinical studies

Ginkgo biloba extract is reputed to be potent in circulatory and other disorders. Because of the interest in its use, a number of clinical trials have been carried out evaluating cognitive functions, such as memory disturbances and dementia, and classical disorders of the circulation such as intermittent claudication.

Within vascular disorders, the Raynaud’s disease is a common and painful condition characterized by episodic digital ischemia produced by emotion and cold. Clinically it manifests as blanching caused by artery vasospasm, cyanosis as the remaining blood becomes deoxygenated, and rubor by the reactive hypercirculation following the ischemia. The treatment of the Raynaud’s disease by vasodilator drugs is notoriously difficult because of the high incidence of side effects; it is a common disease and is estimated to affect 10–20% of young women.

The efficacy of Ginkgoselect® Phytosome® in the treatment of the Raynaud’s disease was verified in a double-blind, placebo-controlled trial. It was proven effective in improving vascular disorders and in counteracting the symptoms of digital ischemia. This initial study is of interest as it shows a highly statistically significant reduction of the number of attacks of Raynaud’s disease per day due to the improvement of peripheral circulation. A similar mechanism of action may be associated with the cognition enhancing activity of Ginkgoselect® Phytosome®.

The free radical scavenging properties and antiplatelet effects of Ginkgoselect® Phytosome® contribute to improve peripheral circulation disorders.

Improvement of the vascular disorders associated to the Raynaud’s disease

Ginkgoselect® Phytosome® was administered at a dosage of 360 mg/day (120 mg three times per day) to 22 subjects affected by the Raynaud’s disease in a double-blind, placebo-controlled trial. Patients were required to record the frequency and duration of any vasospastic attack, also completing a scoring scale of the overall perception of the severity of the episodes. Patients were reviewed after two, four and ten weeks of treatment. This pilot study showed the efficacy of Ginkgoselect® Phytosome® in promoting a clear and highly statistically significant reduction in the frequency (56%) and severity of Raynaud’s attacks per day (chart 1, table 1).

Improvement of the vascular disorders associated to the Raynaud’s phenomenon

Twelve patients with Raynaud’s phenomenon received 180 mg of Ginkgoselect® Phytosome® daily for 6 days. After a 5 days washout period, they received 120 mg of GBE. Upon microscopic examination of nailbed, the Phytosome® preparation made visible capillary loops just under the skin that were not visible before, thus indicating an appreciable improvement of blood flow in capillary loops.

<table>
<thead>
<tr>
<th>Placebo</th>
<th>Ginkgoselect® Phytosome®</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>10 weeks</td>
</tr>
<tr>
<td>Median number of attacks/week</td>
<td>13 [1-30]</td>
</tr>
<tr>
<td>Mean duration of attacks</td>
<td>28.0 min</td>
</tr>
<tr>
<td>Reduction in severity scores</td>
<td>11%</td>
</tr>
</tbody>
</table>

Table 1: effect of Ginkgoselect® Phytosome® on median number, duration and severity of Raynaud’s attacks per week

Chart 1: effect of Ginkgoselect® Phytosome® on mean number of attacks of Raynaud’s disease per week
The pharmacological profile of Ginkgoselect® Phytosome® has been defined by extensive in vitro and in vivo experimental studies. Its bioavailability has been compared to GBE.

- **increase in plasma levels of total ginkgolides (A and B) and bilobalide in healthy volunteers:**

 Fifteen healthy volunteers were randomly divided into two groups and administered respectively with Ginkgoselect® and Ginkgoselect® Phytosome®, providing both 9.6 mg of total terpene lactones. The subjects switched formulations after a week of wash out. Blood samples were collected at 30, 60, 120, 180, 240, 300 and 400 min after ingestion. Terpene lactone detection was performed by means of liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-ITMS). Ginkgolides A, B and bilobalide were absorbed to a higher extent (about threefold) after administration of Ginkgoselect® Phytosome®. As an example, chart 2 reports plasma concentrations of ginkgolide A which, according to AUC, shows a 3.5 folds higher absorption of the Ginkgoselect® Phytosome®.

- **improvement of DHBA urinary excretion in healthy volunteers:**

 Ginkgoselect® Phytosome® (120 mg/day as GBE) or GBE were administered for 5 days to 6 healthy volunteers in a cross-over study. Urine samples were collected and analyzed twice daily and metabolite 3,4-dihydrobenzoic acid (DHBA) was determined by HPLC. Volunteers were asked to refrain from consuming flavonoids-rich foods for the duration of the study.

The pharmacological profile of Ginkgoselect® Phytosome® has been defined by extensive in vitro and in vivo experimental studies. It is reported that the flavonoidic components of the extract are responsible for the antioxidant activity, whereas the terpene lactones, being strong PAF-antagonists, are inhibitors of induced bronchoconstriction, thus suggesting possible anti-asthma applications.

- **antioxidant activity in brain**

 In an experimental model, Ginkgoselect® Phytosome® treatment was found to increase superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities in all the brain regions compared to the control group, treated only with sodium nitrite while in another experiment, Ginkgoselect® Phytosome® exhibited both antiamnestic and antidepressant activities in a scopolamine-induced amnesia model and behavioural despair test.
antioxidant activity

GBE and Ginkgoselect® Phytosome® demonstrated their effective antioxidant capacity by increasing total plasma and brain antioxidant capacity in rats, according to the experimental protocol described below. Ginkgoselect® Phytosome®, though, induced a higher antioxidant protection compared to GBE. GBE and Ginkgoselect® Phytosome® have been administered to a group of 5 rats respectively (plus a control group) at 300 mg/kg/day (and 300 mg/kg/day as GBE for the complexed form). The total plasma antioxidant capacity and the brain antioxidant capacity have been measured by FRAP method. Ginkgoselect® Phytosome® total plasma antioxidant capacity in rats resulted 27.9% higher compared to GBE (chart 4).

In other two experiments the protective effects of Ginkgoselect® Phytosome® on tetrachloride (CCl4) and Rifampicin induced hepatotoxicity was tested. In the most recent one, Ginkgoselect® Phytosome® (25 and 50 mg/kg) elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation and elevated the levels of GSH, SOD, CAT, GPX, GR, Alb and TP in a dose dependant manner. The authors concluded that the hepatoprotective effect of Ginkgoselect® Phytosome® in Rifampicin, an antibiotic used routinely for tuberculosis chemotherapy documented to be a potent hepatotoxicant, induced oxidative damage may be related to its antioxidant and free radical scavenging activity.

antibronchospastic activity

Ginkgoselect® Phytosome®, administered at 300 mg/kg/die (as GBE) for 5 days in guinea pigs, was proven to prevent bronchoconstriction induced by three different agonists (histamine, PAF and acetylcholine). The bronchospastic inhibition was measured at the maximum peak, expressed as variation versus the basal values (cmH2O as intra-tracheal pressure) (chart 5). The results obtained indicate that Ginkgoselect® Phytosome® can not only counteract direct bronchoconstriction, but also it may reduce the TXA2 mediated bronchoconstriction of histamine and PAF, thus suggesting a possible indication in allergen induced bronchospasm.

cardiovascular protection

GBE and Ginkgoselect® Phytosome® also proved their efficacy in protecting rat isolated hearts against ischemia/reperfusion damages. The recovery of the heart activity expressed as left ventricular developed pressure was 76% in Ginkgoselect® Phytosome® and 52% in GBE treated animals. The protective effects in isoproterenol (ISO)-induced cardiotoxicity and the antioxidant activity involved in this protection were investigated in rats. Ginkgoselect® Phytosome® elicited a significant cardioprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation and elevated the levels of glutathione, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The present findings may suggest that the cardioprotective effects of Ginkgoselect® Phytosome® in ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation of membrane.
Conclusive remarks

Ginkgoselect® Phytosome® was proven able to be effective in the treatment of disorders of cerebral function and peripheral vascular insufficiency. The complexation of GBE in the phospholipid complex (Ginkgoselect® Phytosome®) resulted successful in improving the bioavailability of the actives, thus improving the efficacy of the ingredient. Terpene lactones as ginkgolides and bilobalide and flavonoids are responsible for the biological action of Ginkgoselect® Phytosome®.

Toxicology

In a 30-day sub-chronic toxicity study in rats, Ginkgoselect® Phytosome® orally administered at the daily dose of 3.5 g/kg proved to be well tolerated. No mortality or toxic effects that could be attributed to the treatment were observed. Moreover, in the template test in rats, the complex (Ginkgoselect® Phytosome®), as well as GBE, did not induce significant changes in the bleeding time (table 2).

<table>
<thead>
<tr>
<th>GBE</th>
<th>Ginkgoselect® Phytosome®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg/kg) p.o.</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>Control</td>
<td>107.5 ± 6.4</td>
</tr>
<tr>
<td>50</td>
<td>107.0 ± 4.4</td>
</tr>
<tr>
<td>100</td>
<td>127.0 ± 11.0</td>
</tr>
<tr>
<td>150</td>
<td>124.5 ± 8.0</td>
</tr>
<tr>
<td>300</td>
<td>116.5 ± 3.3</td>
</tr>
</tbody>
</table>

Table 2: effect of GBE and Ginkgoselect® Phytosome® on bleeding time (template test) in rats.
References

